903 research outputs found

    Application and comparison of three tomographic techniques for detection of decay in trees

    No full text
    This paper reports application of electric, ultrasonic, and georadar tomography for detection of decay in trees and their comparison with the traditional penetrometer. Their feasibility in arboriculture is also evaluated, critically considering some "open problems." The experiments were carried out in an urban environment on two plane (Platanus hybrida Brot.) trees. Both trees, after felling, showed extensive white rot in the central cylinder. The electric tomography revealed low resistivity zones roughly centered in the trunk. A comparison with the successively cut sections showed a fine correspondence to decayed areas and a strong correspondence between high moisture zones and low resistivity zones. Ultrasonic tomography demonstrated to be a very effective tool for the detection of internal decay, accurately locating the position of the anomalies and estimating their size, shape, and characteristic in terms of mechanical properties. With the georadar technique, the high contrast of electromagnetic impedance measured between the inner decayed section and the outside sound section allowed the detection of the interface between the sound and decayed section of the tree, using radar acquisition in reflection modality. The penetrometer profiles detected the low-resistance areas inside the two trunk

    Decoherence in a Josephson junction qubit

    Full text link
    The zero-voltage state of a Josephson junction biased with constant current consists of a set of metastable quantum energy levels. We probe the spacings of these levels by using microwave spectroscopy to enhance the escape rate to the voltage state. The widths of the resonances give a measurement of the coherence time of the two states involved in the transitions. We observe a decoherence time shorter than that expected from dissipation alone in resonantly isolated 20 um x 5 um Al/AlOx/Al junctions at 60 mK. The data is well fit by a model including dephasing effects of both low-frequency current noise and the escape rate to the continuum voltage states. We discuss implications for quantum computation using current-biased Josephson junction qubits, including the minimum number of levels needed in the well to obtain an acceptable error limit per gate.Comment: 4 pages, 6 figure

    Quantum logic with weakly coupled qubits

    Full text link
    There are well-known protocols for performing CNOT quantum logic with qubits coupled by particular high-symmetry (Ising or Heisenberg) interactions. However, many architectures being considered for quantum computation involve qubits or qubits and resonators coupled by more complicated and less symmetric interactions. Here we consider a widely applicable model of weakly but otherwise arbitrarily coupled two-level systems, and use quantum gate design techniques to derive a simple and intuitive CNOT construction. Useful variations and extensions of the solution are given for common special cases.Comment: 4 pages, Revte

    Magnetism in SQUIDs at Millikelvin Temperatures

    Full text link
    We have characterized the temperature dependence of the flux threading dc SQUIDs cooled to millikelvin temperatures. The flux increases as 1/T as temperature is lowered; moreover, the flux change is proportional to the density of trapped vortices. The data is compatible with the thermal polarization of surface spins in the trapped fields of the vortices. In the absence of trapped flux, we observe evidence of spin-glass freezing at low temperature. These results suggest an explanation for the "universal" 1/f flux noise in SQUIDs and superconducting qubits.Comment: 4 pages, 4 figure
    • …
    corecore